

RNTHAACHFI

Physics Validation of Conv2D Networks for HEP Simulations

vCHEP 2021

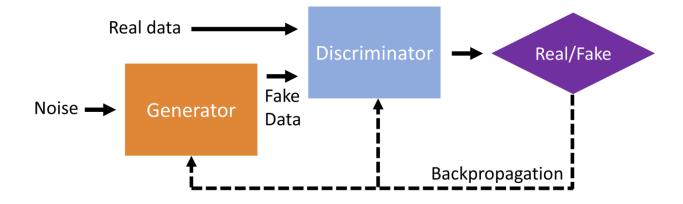
Florian Rehm [CERN openlab, RWTH Aachen]

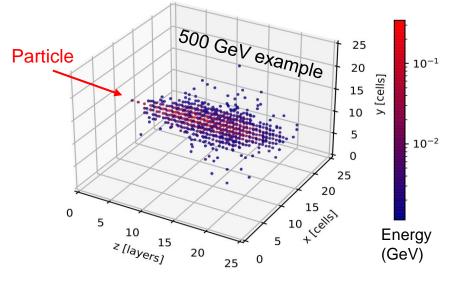
Sofia Vallecorsa [CERN openlab], Kerstin Borras [DESY, RWTH Aachen], Dirk Krücker [DESY]

20.05.2021

Calorimeter Simulations

- Calorimeter detectors measure the energy of particles
- Calorimeter simulations are based on Geant4
- Simulations use about 50% of the resources of the worldwide LHC grid
- LHC high luminosity phase requires 100 times more simulated data*
- → Develop a new approach which occupies less resources
- → Employ deep learning

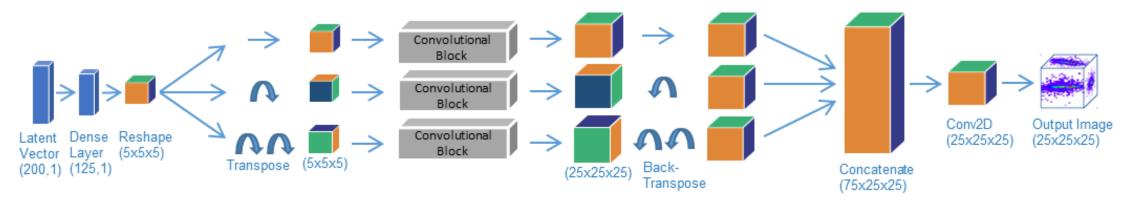

*A Roadmap for HEP Software and Computing R&D for the 2020s https://doi.org/10.1007/s41781-018-0018-8



Generative Adversarial Networks

3DGAN

• Train two networks (Generator & Discriminator) in a minmax game



- 200 000 3D shower images with granularity 25x25x25
- Energies between 2-500 GeV

New Conv2D Generator Architecture

- Conv3D layers are computational demanding
- Conv3D layers are not yet supported in less than 32bit precision
 - → Creating neural network consisting only of Conv2D layers
 - \rightarrow 3 new Conv2D architectures: only best shown in the presentation

\rightarrow Solve 3D image problems with only 2D convolutional layers

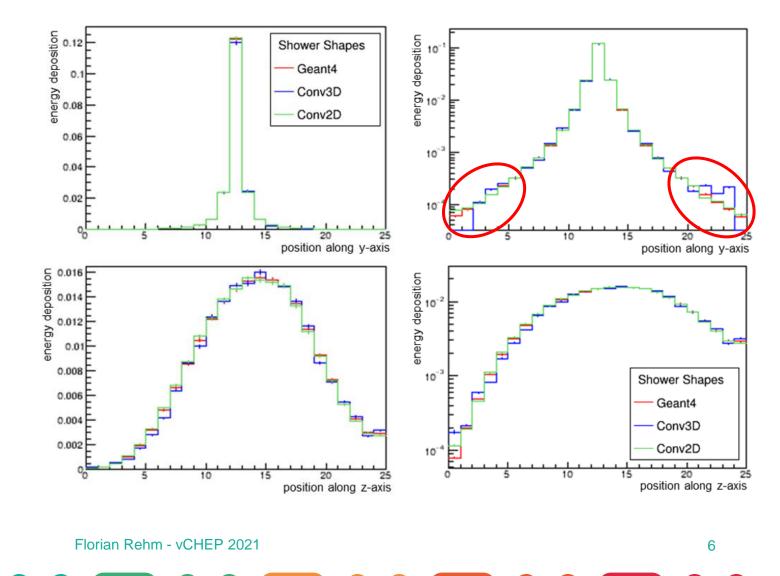
Computational Evaluation

Model	Number of Parameters	Inference Time [s]	Speed up vs Geant4 *	GPU Utilization
Conv3D	752 000	7	6 200x	78.75%
(Best) Conv2D	2 055 000	4.9 (1.29x faster)	8000x	21.75%

- New Conv2D model has more than double as much parameters as the previous Conv3D model
- Inference of Conv2D model is faster
- GPU utilization of Conv2D model lower \rightarrow potential for further speed up
- → 8000x speed up vs Geant4 simulation

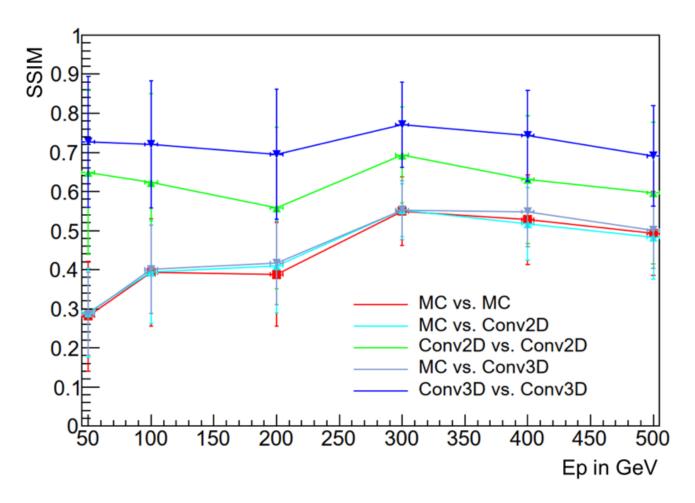
*Geant4 simulation time from a previous measurement in 2018: Book title: "High Performance Computing", Springer, Chapter: "Distributed Training of Generative Adversarial Networks for Fast Detector Simulation"

Physics Evaluation 1


Shower Shapes

• Cell wise the Mean Squared Error (MSE) between GAN and validation data along the three canonical axes:

Model	MSE (Lower is better)	-
Conv3D	0.065	
Conv2D	0.027 🗸	


• Projection of the shower along the different axes

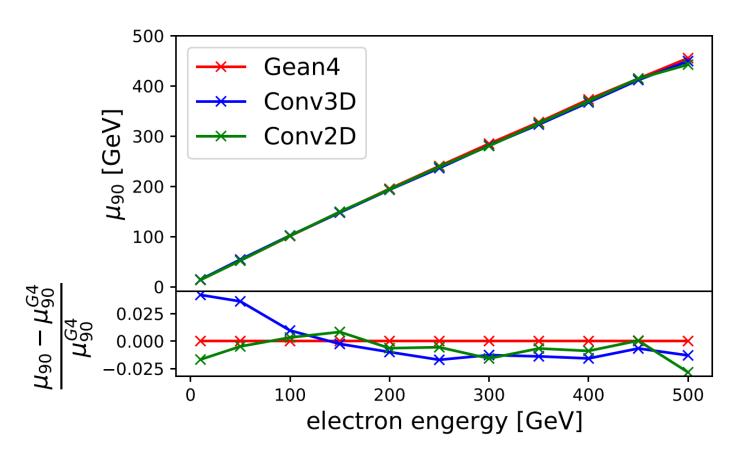
 Conv2D performs better along the tails

Physics Evaluation 2

SSIM

Structural Similarity Index

- Known problem of GANs: Mode collapse
- SSIM estimates the perceptual difference between similar images


 \rightarrow Conv2D performes better

Physics Evaluation 3

Deposited Mean Energy

- Deposited energy with respect to the incident electron energy
- μ₉₀: 90% core of the distributions
- → Conv2D model performs better for lower energies

- **1.29x speed up** with transition from Conv3D to Conv2D networks
 - Further potential speed up for the Conv2D model with using multiple streams
- Overall, both GAN models reached a good physics accuracy
 - The new Conv2D models reached a slightly higher accuracy

→ Total 8000x speed up versus Geant4 simulation

More Details? Read our Paper: <u>http://arxiv.org/abs/2105.08960</u>

Physics Validation of Conv2D Networks for HEP Simulations

Florian Rehm [CERN openlab, RWTH Aachen]

Sofia Vallecorsa [CERN openlab], Kerstin Borras [DESY, RWTH Aachen], Dirk Krücker [DESY]

